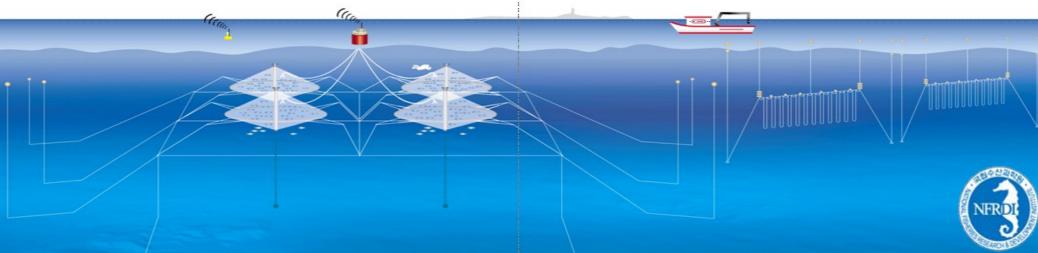


THE NEW CHALLENGE OF KOREAN AQUACULTURE OFFSHORE AQUACULTURE

JUNG UIE LEE, Ph.D.

Aquaculture Management Team, National Fisheries Research & Development Institute


> fishkorea@gmail.com fishkorea@daum.net

BACKGROUNDS

Recent Paradigm of World Aquaculture?

- Trends:
 - ➤Sustainable (지속적 양식)
 - ▶Responsible (책임 있는 양식)
 - ➤ Environment-friendly (환경친화적 양식)
 - ➤ Ecosystem-based (생태계기반 양식)
 - ▶Food-safety (식품안전 양식)
- **Site**: Inshore ⇒ Offshore
- **Scale:** Family-oriented/Small-scale ⇒ Industrial/Large-scale

Difficulties of Korean Aquaculture?

- ➤ Over-cultured in the South Sea where storms can be protected
 - ✓ Low growth rate and pollution-driving disease outbreaks
 - ✓ Losing consumer' trust as valuable fish foods
- Traditionally small scale and family-oriented traditional system
 - ✓ <u>High cost and low efficient business</u>
- Quantity-oriented, few investment for aquaculture engineering
 - ✓ <u>Damaged annually by typhoons and red tides</u>
- Domestic and overseas circumstances
 - ✓ <u>Internally: demanding environment-friendly, food-safety aquaculture</u>
 - ✓ Externally: importing low-cost fishery products

How to Solve?

1. To change the current aquaculture system

- Modification of culture methods
 - **♦** Structure: Quantity-oriented ⇒ Environment-sustainable and/or friendly aquaculture
 - **❖**Culture site: Inshore ⇒ Offshore aquaculture
 - **♦** Scale: Family-managed, small scale ⇒ Industrialized business, large-scale industry
 - ➤ Small-scale ⇒ Large-scale industry
- Up-grading of aquaculture business
 - Enhancement of internal and external competitiveness by
 - Developing genetic engineering and breeding technology
 - ➤ Minimizing disease's caused damages by quarantine and prevention from epidemics
 - Diminishing production cost by automatic culture systems
 - Restoration of consumer's trust by
 - ➤ Performing ecosystem-based aquaculture
 - ➤ Reducing aquaculture-pollution loads by overall application of formulated feeds
 - Minimizing medicine usage and vaccination

2. To shift the current aquaculture's paradigm

- Relocation of aquaculture grounds
 - Inshore
 - Finfish aquaculture within the caring capacity
 - ➤ Ecosystem-based management such as polyculture
 - Improvement of culture grounds by seaweed culture
 - ➤ Leisure/tourism-oriented coastal management
 - Offshore
 - Large industrialized cage aquaculture

Why Offshore Aquaculture?

- > Correspond to international standard for aquaculture activities
 - ✓ Sustainable and responsible
 - ✓ Ecosystem-based and environment-friendly
 - ✓ HACCP principle: Food- safety
- Utilize the ocean three-dimensionally
 - ✓ Inshore: Integrated coastal management, marine leisure zone, extractive aquaculture
 - ✓ Offshore: High-value fed aquaculture
- Strengthen the international competitiveness for aquaculture
- High initial investment for cage installation, autofeeder, workboat, and other facilities
- Risky activities for managing fish cultivation under the deep sea

OFFSHORE AQUACULTURE

Outline ...

- ◆Name of project: Development of Fundamental Technology for Offshore Aquaculture in KOREA
- Period: Three years (year 2005~2007)
- Team formation and major roles:
 - ✓ Jeju Fisheries Institute: Culture techniques, future target fish, feed development, etc.
 - ✓ Engineering department: Net-cage development suitable for Korean environments
 - ✓ Environment department: Environmental assessment
 - ✓ Noah Offshore Farm: Culture and business
- Annual fund:
 - ✓ For research: R&D fund from NFRDI of \$650 thousand
 - ✓ For business: Several million dollars from Noah Offshore Farm
- Offshore cage system:
 - ✓ Ocean Spar of Net Systems co. developed by NOAA, U.S.A.

MISSION AND GOALS...

Paradigm Shift of Korean Aquaculture Industry

Increase aquaculture potentials utilizing open sea
Produce environment-friendly and food-safety culture products
Develop offshore cage fit for Korean oceanic conditions

METHODOLOGY AND RESULTS

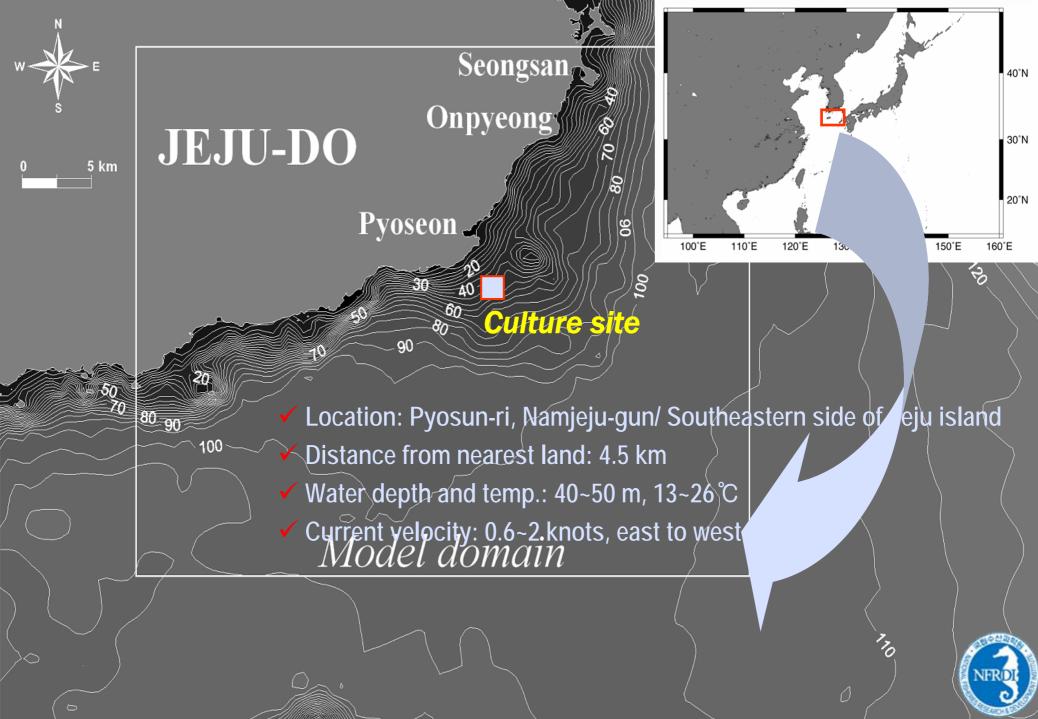
Crucial Factors for Successful Offshore Aquaculture!!!

- ❖Where to settle? < A. Culture site >
 - ➤ Environmentally: W.T., currents, depth, substrates, etc.
 - ➤ Safety of net-cages against strong waves
 - ➤ Other facilities: seedlings, port, transportation, etc
- ❖Which systems to choose? < B. Cage system >
- ❖What kinds of species to culture? < C. Target fish >
- How about manpower?
- Other considerations: law and regulation, residents, etc.

1. Culture Site . . .

Criteria for site selection

- ➤ For cage safety:
 - ✓ Amiable water currents (around 1 knot), typhoons, storms, etc.
 - ✓ Appropriate water depth and substrate components


> For culture animal:

- ✓ Suitable water temperature ranges and duration
- ✓ Seasonal variation of salinity, D.O., and water quality
- ✓ Red tide, pollution, storm, etc.

>Other factors:

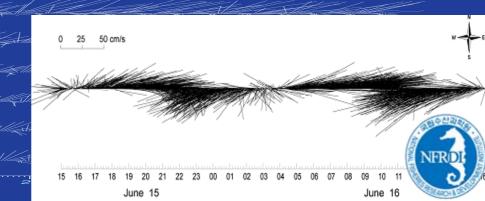
✓ Distance from markets and relative facilities (port, hatchery, etc)

2. Cage Installation . . .

- Which cage systems?
 - > First consideration:
 - ✓ Cage safety against strong water currents and storms?
 - > Second considerations:
 - ✓ Price?
 - ✓ Managing conveniences for cage and culture animals?
 - ✓ Systematic combination of cage and other structures?
 - ✓ Disturbance to navigation and other fishery?
 - ✓ Technological cooperation and assistance?
 - ✓ A/S and technical transfer?
 - >Others:
 - ✓ Sociologically consents?

	SeaStation3000	SeaStation5400
No. installed	Three cages	Three cages
Date installed	May 5 – July 13, 2005	May 4 – 25, 2006
Height	15 m	22.5 m
Diameter	Ф25 m	Ф33 m
Total area	3,000 m³	5,400 m³
Anchor weight	25 ton, Four	37 ton, Four

- **❖** SeaStation[™] (OceanSparLLC. USA)
- Maintenance of the structure: A central spar and 12 circular rims
- **❖** Volume: 3,000/ 4,500/ 6,000 m²
- Why the cage?
 - Practically using in Hawaii, Puerto Rico, New Hampshire, etc.
 - Highly protective against strong currents and storms
 - Not affect boat and ship passage
 - Easy towing for harvest or escaping unfavorable conditions
 - Available to rear fingerlings at a nursery cage in the mother cage



3. Cage Security

By water currents

- > Monitored cage's safety for three months (May 27 to August 30, 2005)
- ➤ Maximally 120 cm/sec on surface
- Slower than 50 cm/sec at 20 to 30 m depth where cages installed
- ➤ Affected by tidal currents than oceanic currents
- Extended anchor lines of 85 m to 95 m by 23.5%
 - ⇒ Added supplemental anchor lines/ dual linage system

- ➤ Observed on Typhoon NAVI (Sep. 2 to 6, 2005) and EWINIA (Jul. 8-13, 2006)
- ➤ Waves maintained 6 to 8 meters high for a week
- ➤ Destructed all buoys on water surface
- ➤ No damaged on the cage systems and culture fish

4. Target fish

Criteria for choosing culture fishes

- **≻**Economic considerations
 - ✓ Domestic and oversea market value?
 - ✓ Competitiveness over other culture species?

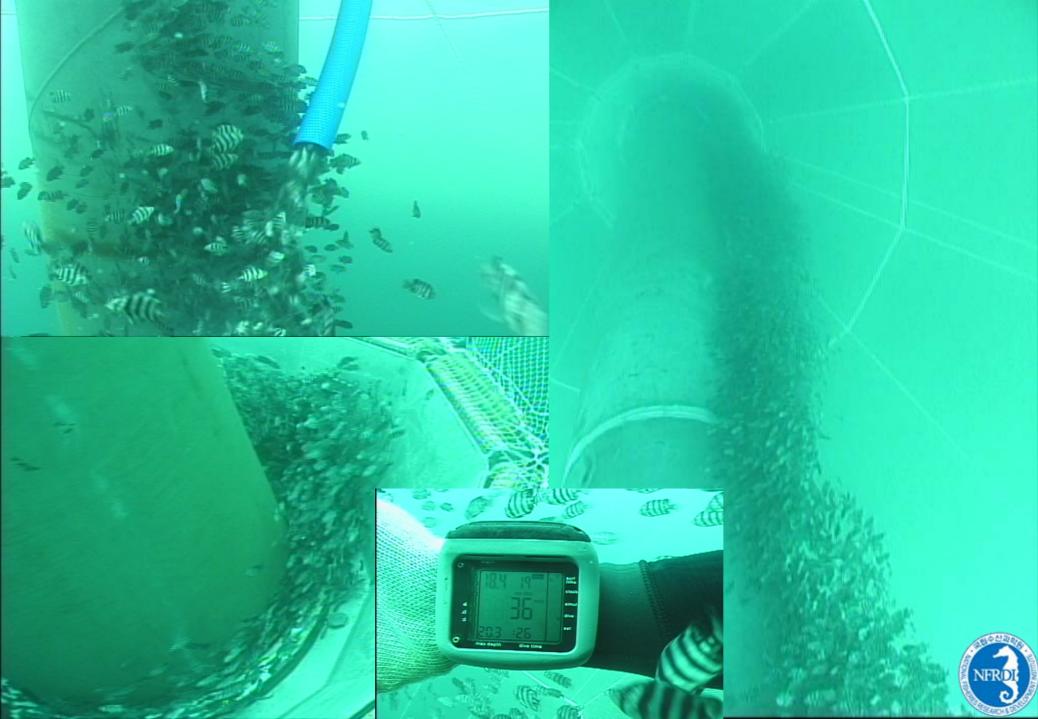
➤ Cultural considerations

- ✓ Ecological and physiological stability to offshore aquaculture?
- ✓ Obtainable mass seedlings production technology?
- ✓ Growth rate and disease resistance?
- ✓ Adaptability for formulated feed?

➤ Social considerations

- ✓ Adverse influence to current culture business?
- ✓ Social restriction?


- ✓ Relatively expensive (larger fish size, higher market price)
- ✓ Suitable for raw fish (taste, texture, etc.)
- ✓ Artificial mass seedling production possible
- ✓ Optimal temperature range in Jeju sea where cages are installed
- ✓ Competition with inshore aquaculture fish species
- ✓ Mass production in offshore aquaculture might be restricted by MOMAF



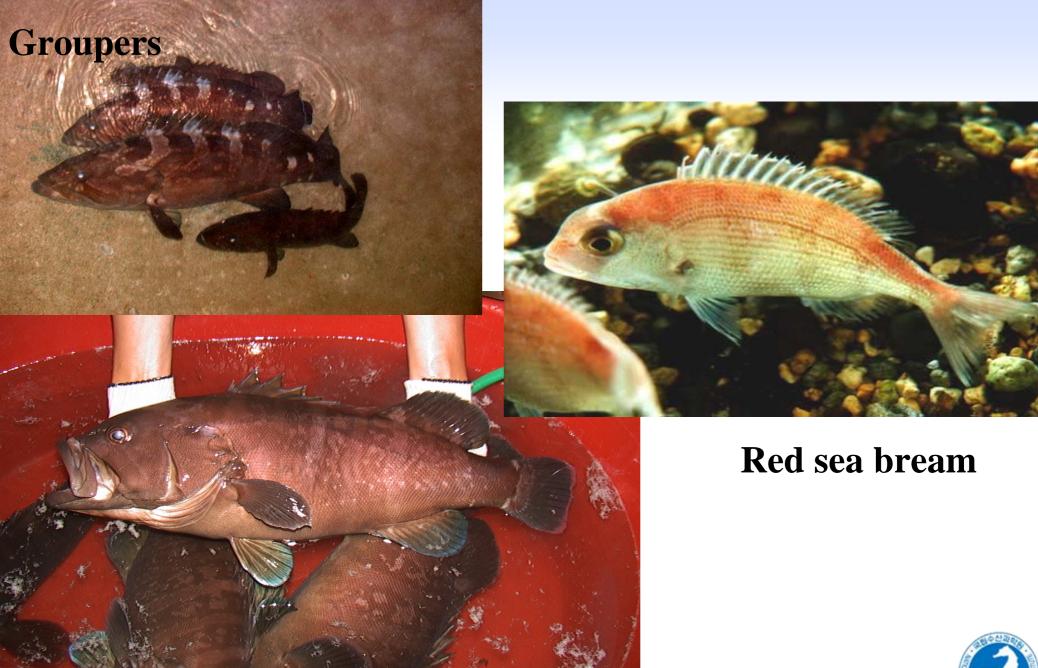

5. Fish Stocking and Feeding

- Fish species: Parrot fish (Oplegnathus faciatus)
- ❖ Date: June 24~July 8, 2005 / June 5~10, 2006
- *Feeding: commercial pellet feed, semi-auto feeding with water from boat
 - ➤ One or two times per day except stormy days (roughly 2 days per week)

6. Growth and Survival

	Initial Jun.24-Jul.8, Jun. 5-10,			Feb. 20, 2006		Aug 25, 2006		Jan. 20, 2007		
Cage	2005		2006		,		.g ==, == ==			
	No. fish (10³)	B.W. (g)	No. fish (10³)	B.W. (g)	No. fish (10³)	B. W. (g)	No. fish (10³)	B.W. (g)	No. fish (10³)	B.W. (g)
1	550	5	-	-	460	131	3001)	180	290 ¹⁾	290
2	75	10	-	-	60	164	160 ²⁾	225	150	322
3	80	123	-	-	64	357	150 ³⁾	5-24	120	25-123
4			400	12	-	-	360	85	04)	0
5			400	9	-	-	370	80	350	178
6			150 ⁵⁾	20	-	-	145	7 5	140	250

- 1) Fish over 200 g has been marketed and around 100 thousand fish moved to No 2 cage (late July, 2006)
- 2) Around 100 thousand fish were stocked from No 1 cage (late July, 2006)
- 3) Other experimental target fishes are culturing: rock fish, yellow croaker, giant croaker, etc.
- 4) The cage was ruptured by accident (early October, 2006)
- 5) Red sea bream were stocked and cultured from late July, 2006



* 7. Other Culturing Fishes

Tiger fugu (Fugu rubripes)

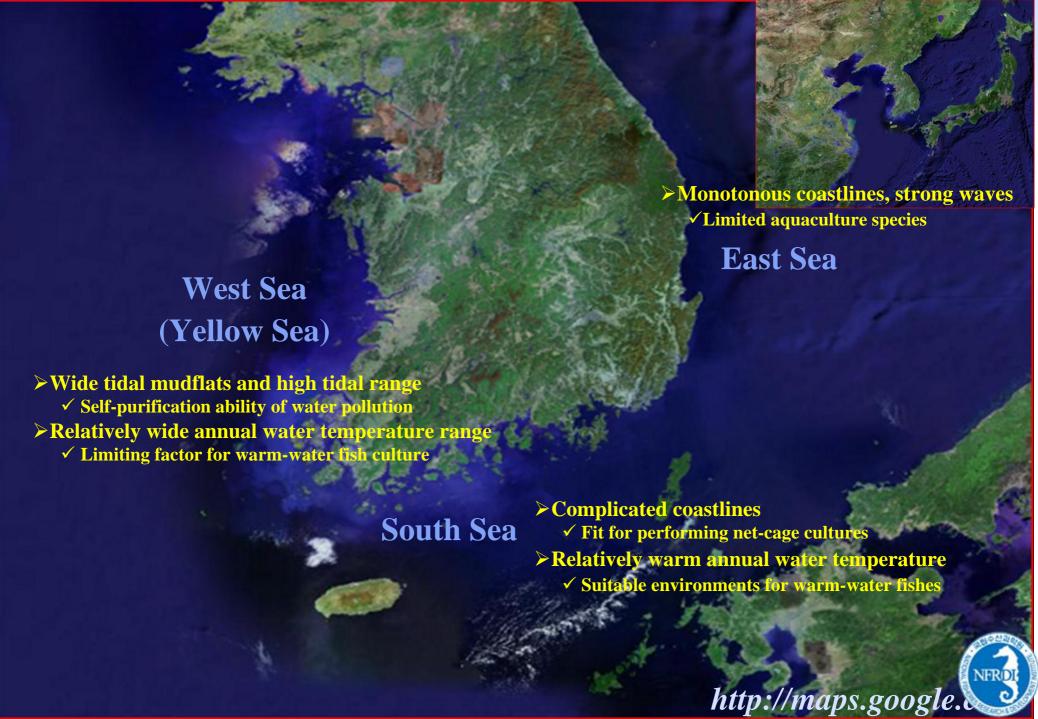
*8. Facilities

Workboat

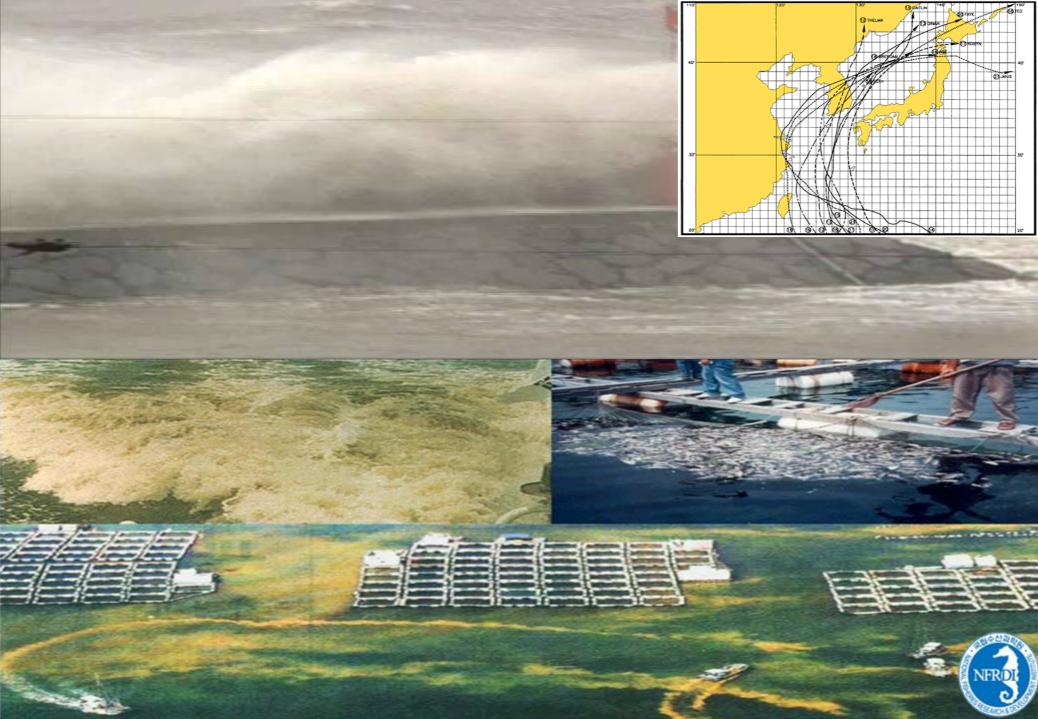
Name	Tonnage	Size	Others
NORH (SGR-068944)	29 ton	Length: 18.16 m, width: 7.30 m, height: 2.20m	Two engines, crane for lifting

DONE AND TO BE DONE?

What's done successfully????


- ➤ Possible to successful offshore aquaculture business in Korea
- ➤ Confirm cage safety against seasonal storms, typhoons, and currents
- ➤ Know-how for offshore aquaculture management: stocking, feeding, harvesting, etc
- ➤ Hold the upper hand over foreign aquaculture products

What's waiting to be developed???


- ➤ Specialized offshore cages for southern coast
- ➤ Superhigh-value candidate fishes for offshore cages
- ➤ Automatic system of feeding, monitoring, swimming activity, etc.
- ➤ Sorting, thinning, net cleaning, harvesting
- ➤ Action dynamics of culture animal

