17th June 2009 YSLME RMC

Status of Fish Vaccine Development in Korea

Myoung Ae PARK

Pathology Division
National Fisheries Research and Development Institute

Contents

- **Status of fish disease in Korea**
- Developed fish vaccine in Korea

3 Research trends of fish vaccine

Aquaculture Production in Korea (2007)

Production of Marine Aquaculture

Fish: 97,663 M/T (7%)

Shell fish: 478,646 M/T

Seaweed: 792,953 M/T(60%)

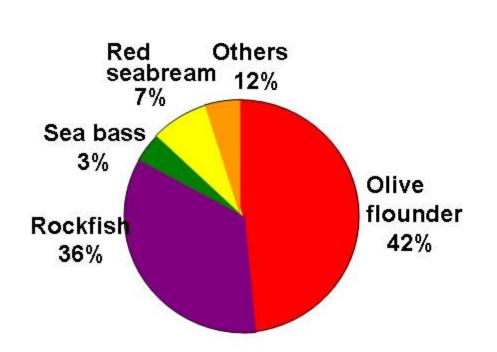
Crustacea: 1,321 M/T

Other: 15,221 M/T

(Production of Inland Aquaculture)

Fish: 23,424 M/T

Shell fish: 1,813 M/T

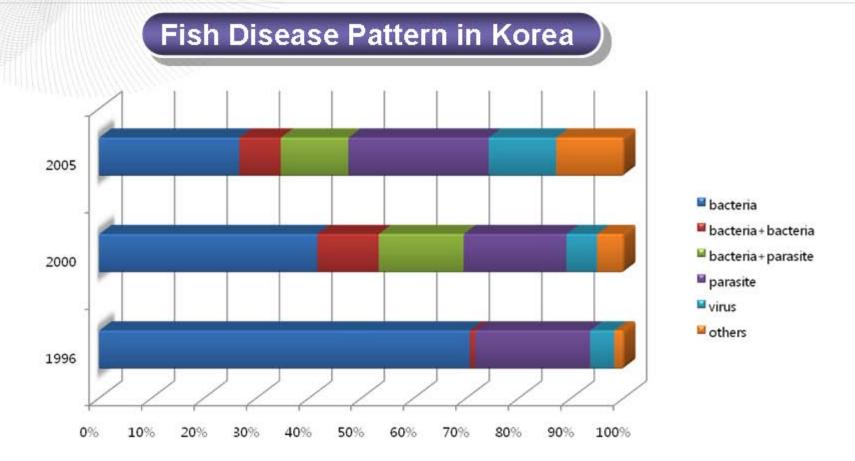

Crustacea: 177 M/T

Other: 132 M/T

Data: MIFFAF

Aquaculture Production in Korea (2007)

Production of Marine Cultured Fish



Total	97,663
Olive flounder	41,171
Rock fish	35,564
Red seabream	7,213
Sea bass	2,361
Other	11,354

Data: MIFFAF

M/T

Status of fish disease in Korea

In the 1990's, losses due to disease were about 5% but this has now increased to about 20%. Major infection causes change from bacterial problems to complex problems.

Status of fish disease in Korea

Major infectious diseases of marine cultured fish

Disease	Causative agent	Affected species	
Red seabream iridoviral disease (RSIVD)	Irido∨irus (RSIV)	Red sea bream, Rock bream, flounder	
Viral nervous necrosis (VNN)	Nodavirus (VNNV)	Several fishes	
Viral hemorrhagic septicemia (VHS) ∨irus infection	vhsv	Oli∨e flounder	
Vibriosis	Vibrio harveyi, V. ichthyoenteri	Oli∨e flounder	
Streptococosis	Streptococcus iniae, S. parauberis	Olive flounder	
Edwardsiellosis	Edwardsiella tarda	Olive flounder	
Scuticociellosis	Uronema marinum	Olive flounder	
White spot disease	Cryptocaryon irritans	Olive flounder	

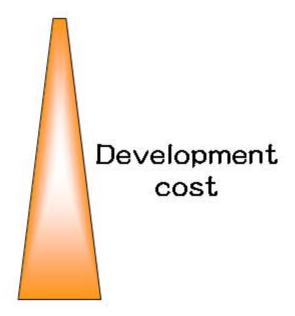
Necessity of vaccine development

Disease Control

- Rapid detection of pathogens and control by antibiotics
- Good husbandry
- Prevention of disease by vaccination

Vaccines

- Major area for growth in aquaculture
- Reduce the need for antibiotics and chemicals
- Save costs
- Reduce problems with antibiotic resistance
- Reduce concerns over residue levels and environmental impacts
- Control significant diseases


Types of Vaccine

- Inactivated whole cell
- Adjuvanted
- Sub-unit
- Recombinant
- Live attenuated
- Synthetic (peptide)
- DNA vaccines

The first commercial vaccine were licenced in the USA in 1970's against enteric redmouth disease, vibriosis and furunculosis

Liscenced Vaccines for Fish

Enteric Redmouth (ERM)

Vibrio anguillarum

Furunculosis

Vibrio salmonicida

Vibriosis/Furunculosis

Vibriosis/Furunculosis/Coldwater Vibri osis/*Moritella viscosa*

Vibriosis/Furunculosis/Coldwater Vibri osis/*Moritella viscosa*/IPN Virus

Vibriosis for cod

IPN Virus

ISA Virus

Warmwater Vibrio spp

Pasteurella

Pasteurella/Vibriosis

SVC virus Lactococcus garvieae/Strep tococcus iniae

Koi Herpes Virus

Aeromonas hydrophila

Carp Erythrodermatitis/Ulcer disease

Piscirickettsia salmonis

Flavobacterium psychrophilum

Nodavirus

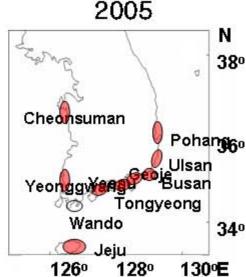
Pancreas Disease Virus

Edwardsiella ictaluri

Status of Fish Vaccine Development

Developed Vaccines for Fish in Korea

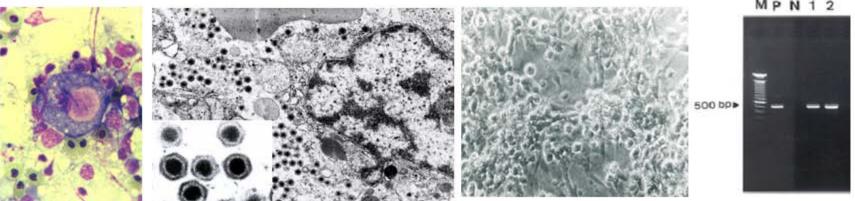
			The second		
Vaccine	Fish	Method	Status		
Inacti∨ated Edwardsiella	Flounder	Immersion	Commercially available		
Inactivated Iridovirus	Sea breams	Injection	Technique was transferred into commercial co. in 2002		
Inacti∨ated Streptococcus	Flounder	Injection	Commercially available		
Inacti∨ated Strepto +Edward	Flounder	Injection	Under developing		
Recombinant Irido∨irus	Sea breams Flounder	Injection	Technique was transferred into commercial co. in 2006		

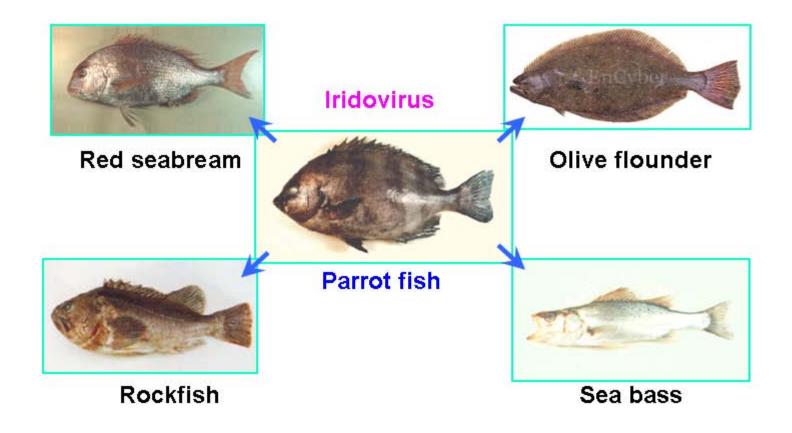

Red sea bream Iridoviral Disease (RSIVD)

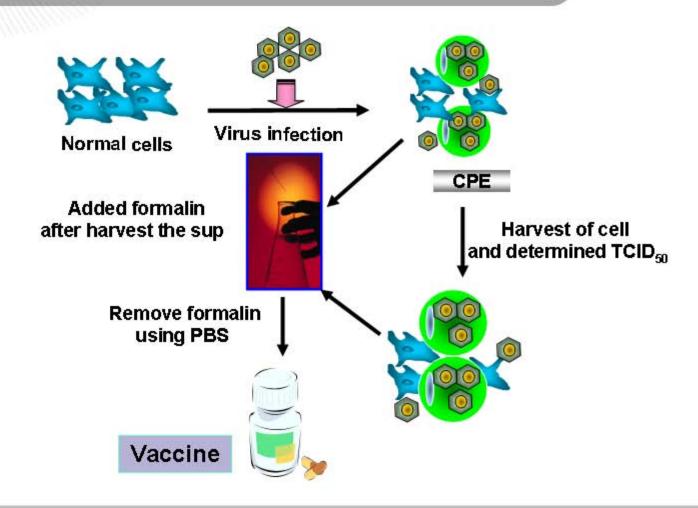
Over 30 cultured and wild fish hosts including:

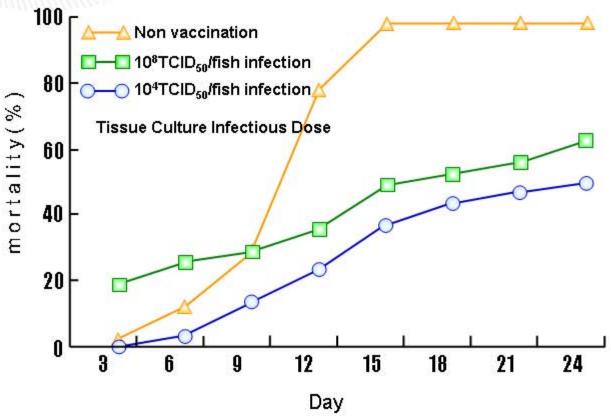
Red sea bream, olive flounder, Sea bream, Barramundi, Japanese sea bass, Largemouth bass, Northern bluefin tuna, Several grouper species, Golden striped amberjack 2005

- Regions affected include:
 Japan, Korea, Taiwan, Singapore
- Diagnosis
 Has been isolated in cell culture.
 PCR commonly used for direct identification or confirmation. FAT used for direct identification.
- Control

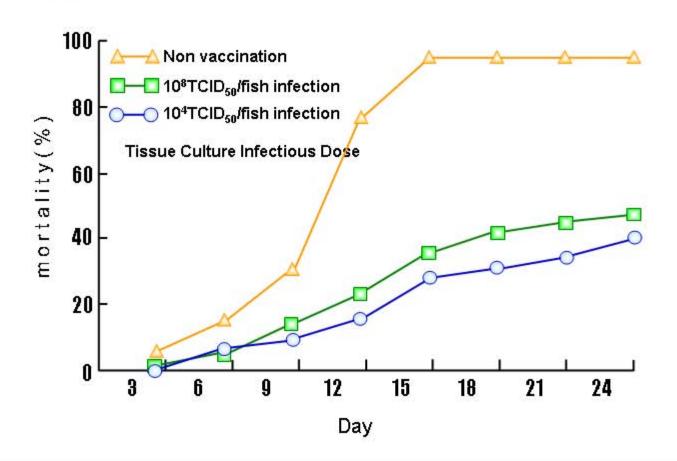

 Inactivated vaccine commercially available
 DNA vaccines have been developed and are being evaluated

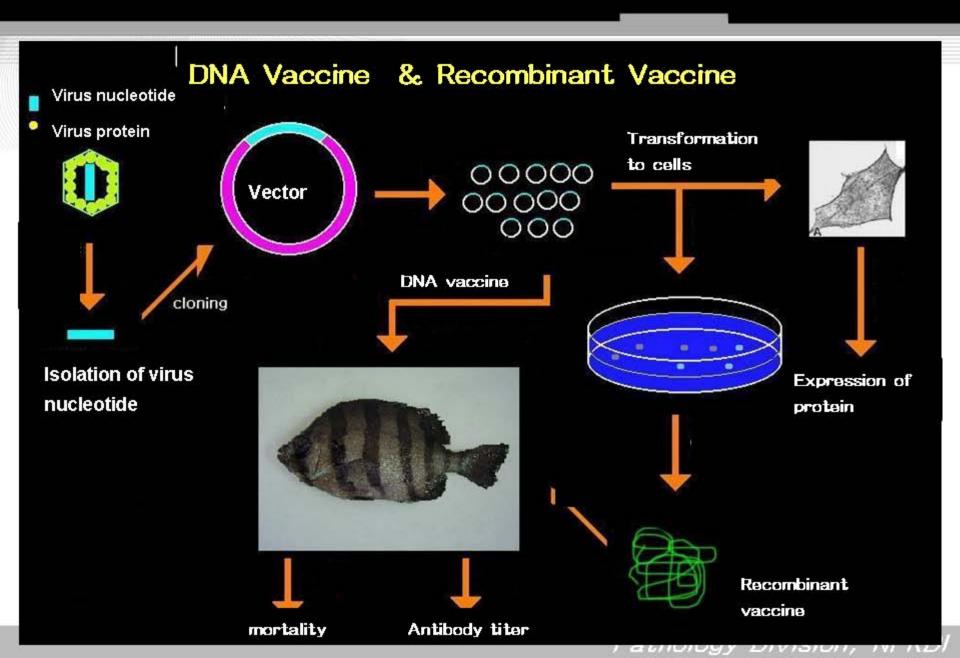

Red sea bream Iridoviral Disease (RSIVD)


- Causes low to high mortality.
- Highly infectious.
- Affects a wide range of food fish.
- Severe anaemia, haemorrhages in gills, enlarged spleen.
- Histology: enlarged cells


Spread to Other Species

Process of Inactivated Iridovirus Vaccine




Cumulative Mortality of Iridovirus Vaccine by Concentration

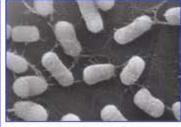
Inactivated iridovirus vaccine was injected to parrot fish, Challenged with live iridovirus

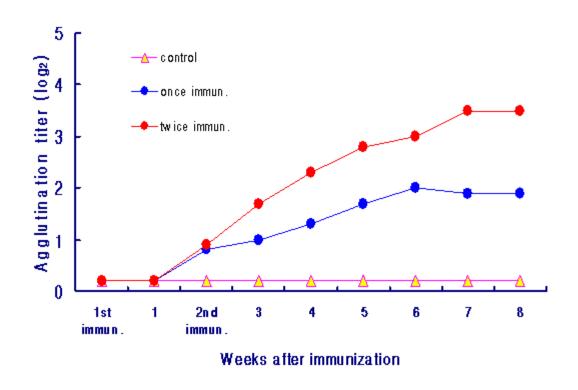
Cumulative Mortality of 2nd Vaccination of Iridovirus

The Problems of Virus Vaccine Development

- Selection of host cell line
- Purification of virus
- Safety issues of genetically modified organisms
- Decision of the time of vaccination

Plans of Virus Vaccine Development


- VHSV: Olive flounder
- Nodavirus: Olive flounder, Grouper, Sea bass
- KHV: Colored carp
- SVC: Carp


- Pathogen: Edwardsiella tarda
- Target organism:
 Flounder, red sea bream
- Outbreak period:
 All the year round
 Caused by chronic
 High cumulative mortality
- Symptom:
 Expanded abdomen, rupture,
 Darkness, ascites, exophthalmia

Efficacy of the Immune System to Vaccination

Agglutination titer after vaccination

Cumulative mortality of vaccinated olive flounder infected with Edwardsiella tarda

Vaccination	Number of fish Immunized and challenged	Dose of challenged (cells/fish)	Number of fish died	RPS (%)
	10	7.1×10 ⁴	2	50
1 st	10	7.1×10⁵	5	17
121	10	7.1×10 ⁶	8	11
	10	7.1×10 ⁷	9	10
	10	7.1×10 ⁴	1	75
0_34	10	7.1×10⁵	1	83
2nd*	10	7.1×10 ⁶	3	67
	10	7.1×10 ⁷	5	50
Control**	10	7.1×10 ⁴	4	
	10	7.1×10 ⁵	б	
	10	7.1×10^{6}	9	
	10	7.1×10 ⁷	10	

^{*} Second immunization was practiced at 2 weeks after first immunization

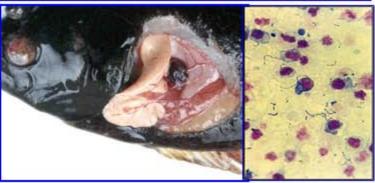
^{**} Unimmunized

Mortality of olive flounder with after challenged virulent Edwardsiella tarda at week 4 after immunization by fish size

Fish size (body weight)	Number of fish immunized and challenged	Dose of challenged (cells/fish)	Number of fish died	Mortality (%)
	10	6.9×10 ⁴	2	20
1.2g	10	6.9×10 ⁵	4	40
	10	6.9×10^{6}	6	60
	10	6.9×10^{7}	9	90
•	10	6.9×10 ⁴	3	30
6.5g	10	6.9×10 ⁵	3	30
	10	6.9×10^{6}	7	70
	10	6.9×10^{7}	8	80

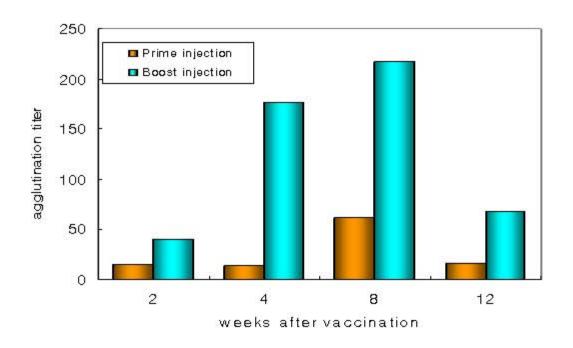
Efficacy of immersion vaccination against Edwardsiella tarda on the cultured olive flounder

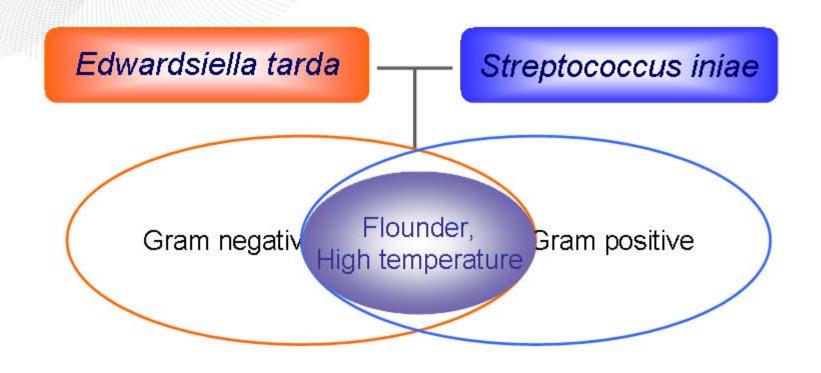
	Number of tested fish			N	/Ionthl	y morta	dity			Cumulative	RPS
		4	5	6	7	8	9	10	11	mortality	(%)
Vaccinatio n Control	5,000* 5,000	5 10	7 5	0 2	7 36	19 643	15 318	0 75	10 38	63 1,127	94.4


^{*} Average body weight: 1.2g (4~5cm)

Streptococcosis

- Pathogen: Streptococcus iniae,
 S. parauberis,
 Lactococcus garvieae
- Target species: Flounder, Rock fish, Yellow tail, Red sea bream
- Outbreak: High temp. season (July-Nov)
- Symptom:


Haemorrhages within the opecular cavity, abdomen and internal organs, ascites, enlargement of the spleen, bloody spot inside of the opercula and peritoneum

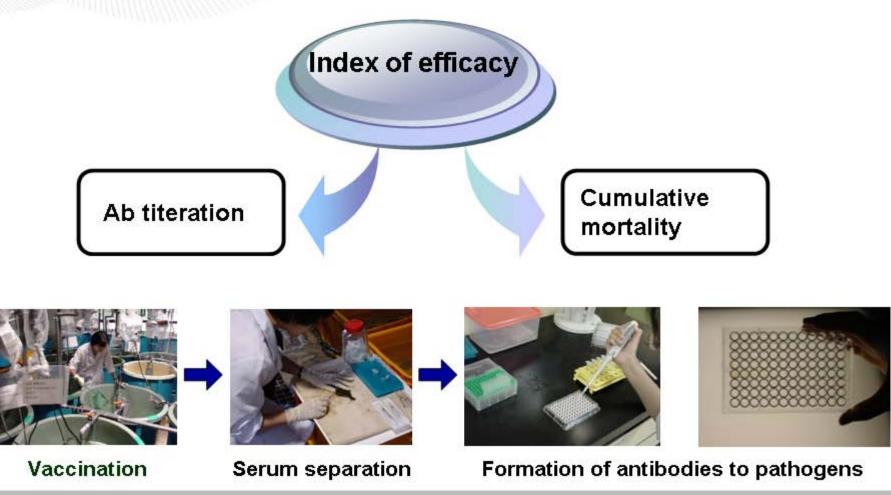

Streptococcosis

Maintain stability and high defense preserved after 15 months

Change of agglutination titer after 15months

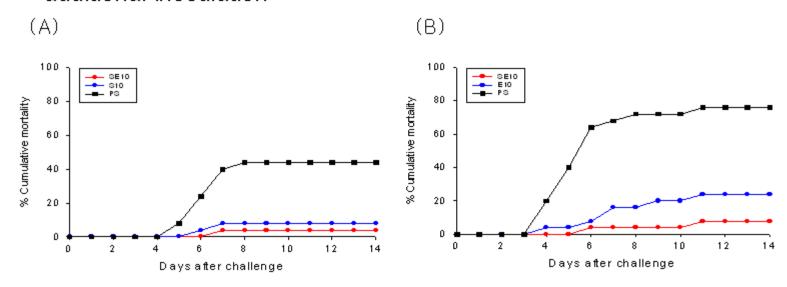
Mixed Vaccine (Edwardsiellosis+Streptococcosis)

The onset of the disease / single infection, mixed infection


Fish Bacteria Vaccine

Selection of Bacterial Strains for Mixed Vaccine

Fish Bacteria Vaccine


Efficacy of Immune Induction Using Mixed Vaccine

Mixed Vaccine (Edwardsiellosis+Streptococcosis)

Validation of the Superior Efficacy of Bacteria Mixed Vaccine

- the protection of two kinds for the disease is acquired just one time vaccination
- → Relative survival rate of mixed vaccine is higher than that of single vaccine in 9-21%
- Immune effects of a short period of time is expected without additional inoculation

연쇄+에드와드 혼합백신의 단독 및 혼합투여 후 S. iniae 와 E. tarda 에 대한 누적폐사율

History and Vision of Fish Vaccine

2020

2015

2010

2009

2007

2005

2004

- Vaccine program
- Oil-based vaccine
- Polyvalent vaccine (E.tarda+S.parauberis+ V.harvey)
- Mixed vaccine(Edwardsiella tarda + Streptococcus iniae)
- Recombinant vaccine(Iridovirus)
- Injection vaccine(Streptococcus iniae)
- Immersion vaccine(Edwardsiella tarda)

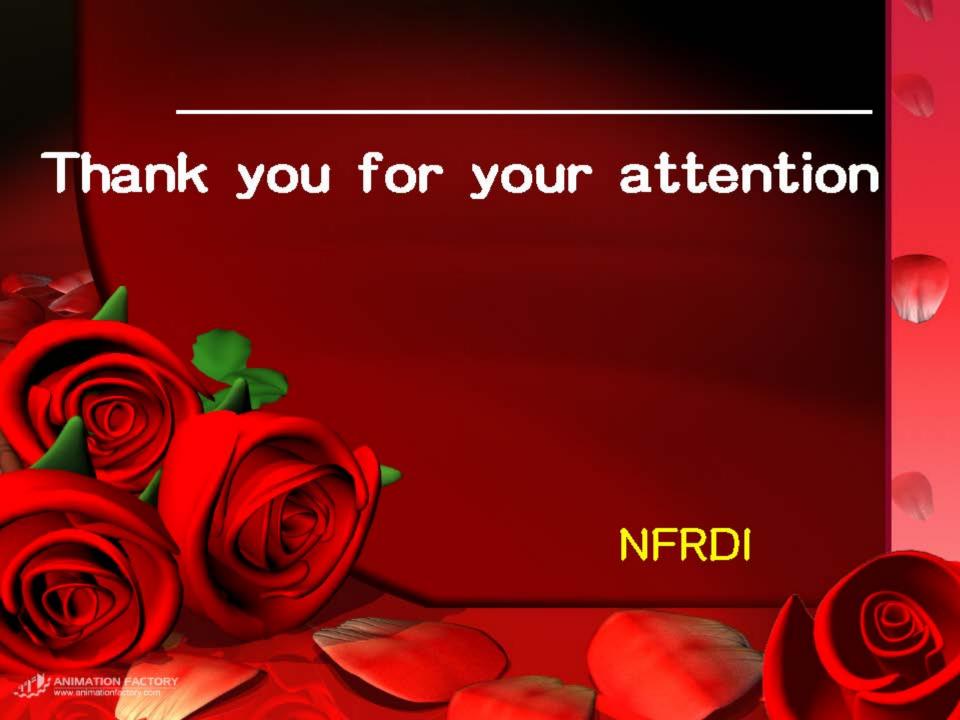
Research Trends in Korea

Present

Treatment by antibiotics

[problems]

- Increased antibiotics resistance bacteria
- Food safety threats by residual antibiotics
- Mixed infection
- Viral disease


Future

Focus on prevention

- > Highly efficacy vaccine development
- > Development of immunostimulants
- Standardization of diagnostic methods
- Development of disinfection protocols

Eat fish, live longer !!!
Eat clam, last longer !!!
Eat oyster, love longer !!!

