CHALLENGE OF OFFSHORE AQUACULTURE IN KOREA

Jung-Uie LEE, Ph.D.

National Fisheries Research & Development Institute (NFRDI)

<u>fishkorea@korea.kr</u> fishkorea@nfrdi.go.kr

Korean Aquaculture *1. Historical Overview*

D

High technology

- Marine culture has rapidly developed since the last 40 years in Korean sea and the major species have changed every 10-year term.
- Seaweed culture used to be the main species of marine culture from the 1960s to the middle 1970s, so as shellfish farming from the middle 1970s to the middle 1980s.
- Meantime, breeding and hatching techniques have been established for some marine fish, red sea bream, olive flounder as well as black rockfish from the 1980s to the 1990s.
- > Since then, marine fish farming has become the most rapidly growing industry in Korea.

2. Characters

D

- Traditionally family-oriented and small scale business: high production cost
- Complicated license systems on aquaculture activities
- Various culture species and culture grounds
- High consumption propensity for fisheries products
 - Per capita food fish supply: 38.5kg (world average: 13.4 kg)
 - > Various fisheries dishes: raw fish, soup, grilled, boiled, dried, etc.
- Highly developed culture technology
 - Seed production, on-growing, culture facilities, etc.
- Active support from the government
 - > Research institutes, educational institutions, administration, etc.

3. Difficulties?

Over-cultured in South Sea where storms can be protected

- > Low growth rate and pollution-driving disease outbreaks
- Seasonal strong storms and typhoons, red tide, environmental impacts
- Complex legal and regulation aquaculture systems
- Negative images on culture products by disease, red tide, antibiotics
 - Losing consumer' trust as valuable fish foods

Domestic and overseas circumstances

- > Internally: demanding environment-friendly, food-safety aquaculture
- Externally: importing low-cost fishery products
- Quantity-oriented, few investment for aquaculture engineering

4. How to do?

1. To change the current aquaculture system Modification of culture methods

♦ Structure:

- Quantity-oriented \Rightarrow Quality and/or food safety-oriented aquaculture
- Intensive ⇒ Extensive and/or responsible aquaculture
- Integrated \Rightarrow Environment-sustainable and/or friendly aquaculture

Culture site:

Inshore ⇒ Offshore aquaculture

♦ Scale:

D

- Family-managed \Rightarrow Industrialized business
- Small-scale ⇒ Large-scale industry

How to do?

Up-grading of aquaculture business

Enhancement of internal and external competitiveness by

- Developing genetic engineering and breeding technology
- Minimizing disease's caused damages by quarantine and prevention from epidemics
- Diminishing production cost by automatic culture systems

✤Restoration of consumer's trust by

D

- Performing ecosystem-based aquaculture
- Reducing aquaculture-pollution loads by overall application of formulated feeds
- Minimizing medicine usage and vaccination
- Eco-friendly aquaculture by adapting recirculation culture system

How to do?

2. Current aquaculture paradigm shift by aquaculture grounds Inshore: Integrated Coastal Zone Management (ICZM) Finfish aquaculture within environmental capacity Ecosystem-based aquaculture such as polyculture Improvement of culture grounds by seaweed culture Leisure/tourism-oriented coastal management ✤Offshore: Offshore Aquaculture Large industrialized cage aquaculture

H

ffshore Aquaculture

OFFSHORE AQUACULTURE

Brief History ?

✤May 2002: 1st Korea-U.S. Aquaculture Cooperation Meeting

December 2004: Approved the new offshore aquaculture project

- ➢ Project for Korean Offshore Aquaculture: 2005-2007
 - ✓ Project team formation
 - \checkmark Site and cage selection, visit several oversea offshore companies
 - ✓ Legal permission from central government

✤April to July 2005: Imported and installed offshore cages

- Three SeaStation3000 and three SeaStation5400
- ➢Installed at southern Jeju coast
- >No financial support from the local and central governments at initial stage
- Financial support from government from 2006
 - >\$1.4 million for each installation site
 - Tongyoung and Geomundo offshore aquaculture followed

1. Offshore Aquaculture (Jeju)

Project: Technology Development for Offshore Aquaculture

Experimental period: Three years (year 2005~2007)

- ✤Team formation and major roles:
 - ✓ Jeju Fisheries Institute, NFRDI: Culture techniques, target fishes, feed, etc.
 - Engineering department, NFRDI: Net-cage development suitable for Korean environments
 - ✓ Environment department, NFRDI: Environmental assessment
 - ✓ Noah Offshore Farm: Culture and business

✤Annual fund:

- ✓ For research: R&D fund from NFRDI of \$700 thousand
- \checkmark For business: Several million dollars from Noah Offshore Farm

✤Regal and social permission:

✓ Experimental area: 10 ha

Location: Pyosun-ri, Seogipo City, Jeju Province
Distance from the land: 4.5 km
Water depth and temp.: 40~50 m, 13~26 °C
Current velocity: 0.6~2 knots

✤ Main structure: Spar, rims, work desk, harvest cone, ballast weight, net, etc.

	SeaStation3000	SeaStation5400
No. cages	Three	Three
Date installed	May 5 – July 13, 2005	May 4 – 25, 2006
Height	15 m	22.5 m
Diameter	Ф25 m	Ф33 m
Total area	3,000 m ³	5,400 m ³
Anchor weight	25 ton, Four	37 ton, Four

Target culture fish

Major culture fish at first phase: Parrot fish (Oplegnathus fasciatus)

- Relatively expensive (larger fish size, higher market price)
- Suitable for raw fish (taste, texture, etc.)
- Artificial mass seedling production possible
- Optimal temperature range in Jeju sea where cages are installed
- Competition with inshore aquaculture fish species

Semiautomatic feeder

- Feeding by siphoning with water, 2 to 5 times per week
- No enough feeding by strong storms and water currents
- No feed storage and barge

Cage Security

- > Three times of typhoons with 6 to 8 m wave
- Destructed all buoys on the surface
- > No damage of cage and animal
- > Many times of big storms but no damage

By water currents

- > 50 to 70 cm/s (max. 120 cm/sec)
- Enforced anchor lines

2. Offshore Aquaculture (Tongyoung)

- Culture site: Tongyoung city, South Gyeongsang Province
- Period of experiment: 2006-2008

- Cage: Three types of experimental systems developed by KORDI
- Institution: Korea Oceanic Research Development Institute (KORDI)
- Major target fishes: Brown croaker (*Miichthys miuiiy*), Red seabream (*Pagrus major*)

Basic guidelines

Wind: 35m/sec
Wave: 5m high
Current velocity: 0.5-1.5m/sec

Circular type

3. Offshore Aquaculture (Geomundo)

Culture site: Geomundo, South Jeonlla Province

- Licensed 5 hectare
- Experimental period: 2007-2009
- ✤ Cage: Four SeaStation[™]5400/Grid mooring type
- Name of company: Geomundo Offshore Farms/NFRDI
- Major target fishes and production capacity
 - Parrot fish (Oplegnathus faciatus), Red sea bream (Pagrus major), Mackeral (Scomber japonicus)

SeaStation5400[™] (OceanSpar LLC)

- **Volume: 5,400m³**
- Composition: central spar of 22.5 m high, circular rims, harvest cone, net, etc
- Anchored with four concrete blocks of 37 tons

*Autofeeder

- > Feed storage: totally 20 tons (5 tons with 4 chambers)
- > Feeding: Four separate feeding with water pumping
- > Manufactured by Hosan Manufacturing Co.

Target culture fish

- ✤ Major target fishes:
 - Grouper (Epinephelus septemphasiatus), red seabream (Pagrus major)

Annual production:

- Stocking:
 - July –August 2007
 - Stocked 1 year old fish overwintered

Feeding: two to five times depending water temp.

***** Water currents ranged from 40 to 60 m/s

No damage of fish and cages

Typhoon NARI was attacked around offshore site

- > Forty meter per sec velocity and three days (Sep. 2007)
- > No damage to cage, anchoring, rim, spar and culture animals

Fish schooling around offshore cages

감사합니다.. Thank you and enjoy your trip in Jeju!!!

<u>fishkorea@korea.kr</u> <u>fishkorea@nfrdi.go.kr</u>