

中国水产科学研究院南海水产研究所 South China Sea Fisheries Research Institute, CAFS

Bioremediation of mariculture environment A case study in a marine cage fish farm in Daya Bay

HUANG Honghui

jxhuanghh@21cn.com

Introduction

Summary of the fish farm in Daya Bay

Bioremediation scheme

Results and discussion

I. Introduction

Developing of marine cage fish farming in coastal waters of China

Marine cage fish farming first began in Guangdong coastal waters in China at the end of 1970s.

Number of traditional raft cage: Increased from about 130,000 cages in 1992 to 1,000,000 in 2004.

Annual yield: Increased from about 15,000t in 1992 to 337,000t in 2003.

Increasing trend of traditional marine fish farming raft cages in coastal region of China

Issues caused by marine cage fish farming

 Self-pollution: eco-environment (water quality, sediment quality and biodiversity etc.) deteriorated in fish farm

 Environmental impact in vicinity area, coastal eutrophication, red tide and etc.

 Disease: decrease of fish production abuse, fish quality

Occurring times of red tide in the Chinese offshore area (1986-2002)

History record of fishery production damage caused by red tide in Guandong

coastal waters

Time	Occur place	Red tide organism	Damage
1980.5	Zhanjiang Harbor	Guinardia flaccida	Fish killed
1983.3	Daya Bay Dapeng Bay	Rhizosolenia alata f.gracillima	75 tonnes of fish dead
1986.2	Shengzhen Bay	Noctiluca scintillans	Fish dead
1987.7	Hongkong coastal waters		120 tonnes of fish dead, 24000 Ponds diret economic losses
1987.8	Tolo Harbor	Skeletonema costatum	3 million Hongkong Dollars diret economic losses
1988.12	Dapeng Bay	Noctiluca scintillans	Fish dead
1989.4	Shengzhen Bay	-	Fish dead
1991.3	Dapeng Bay	Chattonella marina	Fish dead
1997.11	Zhelin Bay	Phaeocystis pouchetii	60 million RMB diret economic losses
1998.3	Hongkong coastal waters	Cochlodinium sp.	1500 tonnes fish dead, 300 million Hongkong Dollars diret economic losses
1998.3	Dapeng Bay~Pearl River Estury	Gymnodinium mikimoti, Dinophysis sp.	300 tonnes fish dead, 40 million RMB diret economic losses
1998.4	Dongpin Harbor	These and the second	5 million RMB diret economic losses
2000.8	Daya Bay	Gyrodinium sp., Gonyaulaxovalis spinifera, Peridinium sp.	5 million RMB diret economic losses

Dead fish caused by red tide

II. Summary of the fish farm in Daya Bay Background of the farm

——The cage fish, setup in 1985 within Dapeng Ao Cove, a shallow semi-enclosed embayment located inside Daya Bay in the middle Guangdong coast of South China

Marine fish farming activities are confined to about 30 ha within the inner part of the cove, with cage rafts occupying about 4 ha and annual fish yield of about 300~450 tones.

——The average fish stock density is about 5.1kg/m³. Fish are fed mainly by using trash fish supplying an amount about 3-10% of the total biomass contained in the cage, and with a final food conversion coefficient of 5-10 (calculated as ratio of food input to fish production).

II. Summary of the fish farm in Daya Bay Background of the farm

——The cage fish, setup in 1985 within Dapeng Ao Cove, a shallow semi-enclosed embayment located inside Daya Bay in the middle Guangdong coast of South China

Marine fish farming activities are confined to about 30 ha within the inner part of the cove, with cage rafts occupying about 4 ha and annual fish yield of about 300~450 tones.

——The average fish stock density is about 5.1kg/m³. Fish are fed mainly by using trash fish supplying an amount about 3-10% of the total biomass contained in the cage, and with a final food conversion coefficient of 5-10 (calculated as ratio of food input to fish production).

Guangdong Province

South China Sea

Marine cage fish farm

Location of sampling stations

Fish farming cages

100

No. of Conception, Name

■ weight<200g ■ weight 200-500g ■ weight >500g

Time

Seasonal changes of carrying capacity of different size of cage cultured fish

II. Summary of the fish farm in Daya Bay Major environmental issues DO in water

Sediment organic carbon content

Cage fish farming area **Control area 5.0 Organic carbon content 4.0** / % **3.0** 2.0 1.0 2001.6 2001.9 2004.5 2004.10 2002.4 2002.6 2003.12 2001.12 Time

Sediment sulfide content

Moderate eutrophication (NQI)

2001.6 2001.9 2001.12 2002.3 2002.4 2002.6 2003.12 2004.5 2004.1

II. Summary of the fish farm in Daya Bay

Sediment organic carbon, sulfide content and DO in water in cage fish farming area exceeded the standards of first class of Marine sediment quality and the second class of seawater quality for fisheries in China with exceeding rate of 90.9%, 100% and 62.5%, respectively; while those in control area were 76.2% and 14.3% and 20.0%, respectively. Sulfide content was about 2 times higher than that in control area.

Seawater was in moderate eutrophication.

Suggested that sediment environment in the cage fish farm was polluted seriously, and seawater quality in the cove showed signs of deterioration in a certain extend due to the cage fish farming activities carried out for about thirty years.

III. Bioremediation scheme > Bioremediation of IMTA on water environment

Nutrient absorb — seaweed (Graciaria lemaneaformis)

III. Bioremediation scheme > Bioremediation of IMTA on water environment

POM filter — pacific oyster

Demonstrate a IMTA model fish-shellfishseaweed

III. Bioremediation scheme

Land-based seawater-resistant vegetable (Calicornia biglovii) planting

III. Bioremediation scheme Screen, purification and enrichment culture of local Sulfate Reducing Bacteria

One week after inoculation sediment turn black, the adapter.

One week after inoculation sediment turn black, the adapter.

50%

One week after inoculation sediment turn black, coated tablet

SRB

Photosynthetic bacteria and antagonism on Sulfate Reducing Bacteria

IV. Results discussion

Mutual benefits to seaweed-fish co-culture

DO production from seaweed.

Nutrient released from fish was absorbed by seaweed.

Calculation of nitrogen balance between discharge & uptake in fish cage Seaweed-fish

1 kg Fish need G 4.7 kg Graciaria lemaneaformis (wet weight)

Calculation of nitrogen balance between discharge & uptake in fish cage Oyster-fish

1 kg Fish need G 5.1 kg Pacific Oyster (wet weight)

Next study Carrying capacity and IMTA model optimization based on hydro-ecological coupling simulation model

Thanks for your attention!